
CS522 - Exotic and Path-Dependent Options
Tibor Jánosi
May 5, 2005

0.1 Other Option Types

We have studied extensively European and American puts and calls. The class of options
is much larger, however.
A digital (binary) option is an option that has a discontinuous payo¤. An example

of such an option is the European cash-or-nothing option, whose payo¤ at the expiration
time T is given by the following formula:

VB(T; S) =

�
1; if S > K
0; otherwise

:

As usual, we have denoted the strike price by K.
An Asian option is an option whose payo¤ depends on a suitably de�ned average

�S of the underlying stock�s price between the inception of the option and its expiration.
The payo¤ of an Asian call with strike K is then given by

CA(T; �S) = max(�S �K; 0):

Note that the second argument of C in the formula above is not the �nal stock price,
but its average. This average can be computed continuously, or at discrete points only:

�S =
1

T

Z T

0

S(t)dt

�S =
1

n

nX
i=1

S(ti), where 0 6 t1 < t2 < : : : < tn 6 T

A �xed lookback call or put is an option whose value depends on the maximum or
the minimum of the underlying�s price during the lifetime of the option, respectively:

CfixedL (T) = max(max
t2[0;T]

S(t)�K; 0)

P fixedL (T) = max(K � min
t2[0;T]

S(t); 0)

Like in the case of Asian options, the maximum or the minimum stock price can be
computed by sampling the stock price at discrete moments in time.
In the case of a�oating lookback option the strike price is not �xed, but it is chosen

based on the best available price of the underlying over the lifetime of the option:

C
oatL (T) = max(S � min
t2[0;T]

S(t); 0)

P
oatL (T) = max(max
t2[0;T]

S(t)� S; 0)

1

A large class of options is that of barrier options. Barrier options have knock-in
and/or knock-out features. A knock-in feature is a condition that causes the option to
be e¤ective only if the underlying reaches a certain price level. A knock-out feature is
a condition that causes the option to terminate immediately if the underlying reaches a
certain price level.
There are four main types of barrier options: "up-and-in", "up-and-out", "down-and-

in", and "down-and-out."
The "up-and-in" option becomes e¤ective only if the underlying �rst reaches a prede-

termined knock-in barrier from below. Once the barrier is reached, the option behaves
like a plain-vanilla option.
The "down-and-out" option behaves like a plain vanilla option as long as the knock-

out-barrier speci�ed for the respective option is not reached from above. When - and if -
that happens, the option immediately terminates.
The de�nition of the "up-and-out" and "down-and-in" options is analogous.
Given that we have four types of barrier options, and that they can be either puts and

calls with European or American features, we have implicitly de�ned 16 barrier option
types, each with its own valuation problem.
Even more complicated options can be de�ned. For example, one can de�ne options

that knock-in only if the price of the underlying enters and stays inside a band of prices
delimited by an upper and lower barrier.
It is not necessary for the underlying of an option to be a stock. One can de�ne options

on options, leading to compound options, e.g. a call on a put. A chooser option is an
option expiring at time T1 which allows the holder to choose between a plain-vanilla put
or a call expiring at time T2 > T1. Options can be de�ned on underlying commodities
(e.g. options on gold futures).
As you can see, there are many types of options, and there is almost a limitless

theoretical possibility of adding new features. In practice, however, the choice of features
is guided by the needs of the market. Options with features desired by many market
participants are often traded on exchanges. Typically, these are simple options that
have been widely studied theoretically and are well understood empirically. Complicated
options, with many unusual features are often written by big �nancial companies at the
request of their clients. Often, such values are hard to value, especially since they are
illiquid.

0.2 Valuing Path-Dependent and Exotic Options

It is sometimes possible to write closed-form formulas for the value of exotic and path-
dependent options.

0.2.1 Analytic Valuation: Chooser Options

Assuming that the money market account earns interest at the constant rate r, the time-t
value of a chooser option that gives its holder the right to choose at time time T1 between

2

a European put or a call with strike K and expiration date T2 > T1 is given by the
following formula:

V (t; T1; T2;K) = p(t; T2;K) + c(t; T1;Ke
�r(T2�T1));

i.e. the value of chooser option is equal to the value of a European put with expiration
date T2 and strike price K, plus the value of a European call with expiration date T1 and
strike price Ke�r(T2�T1). We provide the proof of this claim below.
When we are at time T1, and we hold a chooser option, the rational decision is to

choose the underlying plain-vanilla put or call with the higher value. For any underlying
stock price S(T), we will thus choose the call if c(T1; T2;K) > p(T1; T2;K); if not, we
will choose the put. Let us denote by A the set of all states of the world at time T1 for
which the underlying call is more valuable than underlying the put. Let function IA be
the indicator function of set A. Since all the relevant parameters (r, �, T1, T2, K) are
�xed, in our model the states of the world at time T1 are distinguished only by the price of
the stock price at that very same moment of time T1. To avoid complicating our notation
further, we identify these states with their associated stock price.
The time-T2 payo¤ of the chooser option1 is given by the following formula:

V (T2; T1; T2;K) =

�
max(S(T2)�K; 0), if IA(S(T1)) = 1
max(K � S(T2); 0), if IA(S(T1)) = 0

:

The notation for the value of the chooser option is somewhat unwieldy, but informative.
V (ta; tb; tc;K) represents the time-ta value of a chooser option expiring at time tb; the put
or call that the chooser option make available will expire at time tc and their common
strike price is K.
The formula expresses the very simple fact that if at time T1 we went through a state

in set A, then we chose the call, and we will receive its payo¤. If we went through a
state that is not in A (i.e. we went though a state in the complement of A, AC), then we
will receive the payo¤ of the put. By introducing the notation (�)+ = max(�; 0) and the
indicator function IAC of the set AC , we get

V (T2; T1; T2;K) = (S(T2)�K)+ IA(S(T1)) + (K � S(T2))+ IAC (S(T2)):

Since A and AC have no common elements, and their union is the set of all possible
states at time T1, we can conclude that IA(S(T1)) + IAC (S(T1)) = 1, irrespective of the
value of S(T1). The time-T2 of the chooser option can now be rewritten as follows:

V (T2; T1; T2;K) = (S(T2)�K)+ IA(S(T1)) + (K � S(T2))+ (1� IA(S(T2)))
=

�
(S(T2)�K)+ � (K � S(T2))+

�
IA(S(T1)) + (K � S(T2))+

= (S(T2)�K) IA(S(T1)) + (K � S(T2))+ :
1Strictly speaking, we do not have a chooser option at T2 anymore, since it expired at time T1. We

are really talking about the payo¤ of the instrument we got when we exercised the chooser option. For
simplicity, however, we will keep talking about the chooser option�s payo¤ at T2.

3

The last equality has been obtained by noticing that the sum (S(T2)�K)+�(K � S(T2))+
represents the payo¤of a portfolio consisting of a long call and a short put. An application
of the put-call parity for European options expiring at time T2 immediately produces the
equivalent expression.
Now that we have an analytic expression for the value of the chooser option (more

precisely, whatever became of it) at time T2, we can compute its value at time T1 by
determining the discounted expect value of the payo¤ under the equivalent martingale
probability measure:

V (T1; T1; T2;K) = e�r(T2�T1)Eq
�
(S(T2)�K) IA(S(T1)) + (K � S(T2))+

�
= e�r(T2�T1)IA(S(T1))Eq [(S(T2)�K)] + e�r(T2�T1)Eq

�
(K � S(T2))+

�
= e�r(T2�T1)IA(S(T1))Eq [(S(T2)�K)] + p(T1; T2;K)
= IA(S(T1))

�
e�r(T2�T1)Eq [S(T2)]�Ke�r(T2�T1)

�
+ p(T1; T2;K)

= IA(S(T1))
�
S(T1)�Ke�r(T2�T1)

�
+ p(T1; T2;K):

The �rst term in the expression above has been rewritten by �rst removing the indicator
function from under the expectation operator. This step is justi�ed by noting that at time
T1 the value of the underlying stock S(T1), and thus the value of the indicator function
has been totally determined; this quantity is not random from time T1 on. Noting that
the expectation of a constant (K) is the constant itself, and that the discounted expected
stock S(T2) is equal to the stock price at time T1 (why?), we can completely eliminate
the expectation operator.
The second term corresponds to the de�nition of the time-T1 value of a European call

with expiration T2 and strike price K.
Let us now revisit the condition that de�nes states in set A:

c(T1; T2;K) > p(T1; T2;K)

c(T1; T2;K)� p(T1; T2;K) > 0
S(T1)�Ke�r(T2�T1) > 0

The last relation has been obtained by using the put-call parity for European puts.
Note that the expression that de�nes the set of states A is the same as the expression

multiplying the indicator function in the expression for V (T1; T1; T2;K). By observing
that

IA(S(T1))
�
S(T1)�Ke�r(T2�T1)

�
=

�
S(T1)�Ke�r(T2�T1), if S(T1)�Ke�r(T2�T1) > 0
0, otherwise

;

we can rewrite the leftmost term in V (T1; T1; T2;K) as
�
S(T1)�Ke�r(T2�T1)

�+
. We now

get:

V (T1; T1; T2;K) =
�
S(T1)�Ke�r(T2�T1)

�+
+ p(T1; T2;K)

= c(T1; T1;Ke
�r(T2�T1)) + p(T1; T2;K):

4

Thus, at time T1 the value of the chooser option is given by the value of a European
call with expiration T1 and strikeKe�r(T2�T1), plus the value of a European put expiring at
T2 with strike price K. A simple arbitrage argument immediately leads to the conclusion
that the equality must hold for all times t between 0 and T1:

V (t; T1; T2;K) = c(t; T1;Ke
�r(T2�T1)) + p(t; T2;K):

A chooser option appears to be, and in some sense is, a complicated instrument. Care-
ful reasoning and the knowledge we gained from studying plain-vanilla options allowed us
to decompose the chooser option into a portfolio of one European put and one European
call. These instruments, in turn, can be valued using the Black-Scholes formulas.
It is often possible to decompose complex instruments (not only options) into simpler

ones. Sometimes, like here, the valuation of the simpler instruments is straightforward,
but this is not always the case.
Can you derive an alternative valuation formula for chooser options? Hint: Express

the value of IA as a function of IAC .

0.2.2 Binomial Method: General, but Slow

If an instrument can not be valued using closed-form formulas, then one must look for
numerical alternatives. As we have seen earlier, approximate values for simple options are
easy to compute using the binomial method. We have also seen, however, that certain
features of the underlying option make the binomial method to become resource intensive,
when analyzed from an algorithmic perspective.
In particular, we have shown that if a stock pays discrete dividends, then each node

that corresponds to a given dividend payment "sprouts" a new subtree whose nodes will
not recombine with the nodes of subtrees associated with its neighboring nodes. This
yields to an exponential increase in the total number of nodes in a binomial tree, when
viewed as a function of the number of dividend payments. The presence of discrete
dividends can greatly increase the running time and memory consumption needed for
evaluating even simple options. While we did not address this topic extensively, it should
be clear to an informed reader that discrete dividends will complicate valuation methods
based on di¤erential equations or inequalities as well (they induce discontinuities in the
solution).
Path dependent options impose another type of complexity, which also yields to an

exponential increase in the number of states. Let us consider an European instrument
whose payo¤ is an arbitrary function of all the stock prices encountered on the speci�c
path followed from time 0 to expiration. This means that each individual node in which
we could end up at expiration must be associated with the entire history of stock price
evolution.
There are several ways in which one could achieve this association. The easiest one,

and the one typically given in textbooks, is to not to recombine the nodes. If this approach
is followed, then each node is associated with a unique path from the root of the tree (time-
0) to the respective node. Hence, knowing what node we are in allows us to determine

5

path 1

path 2 or 3

path 4

path 2

path 1

path 3

path 4

path 1

path 2 or 3

path 4

path 1

path 2 or 3

path 4

path 2

path 1

path 3

path 4

path 2

path 1

path 3

path 4

Figure 1: Tracking paths in binomial trees with recombining and non-recombining nodes.

fully the price history of the underlying instrument, as illustrated in �gure 1. This idea
is easy to implement, and very general, but it results in the doubling of the number of
nodes at each level of the binomial tree. Such a binomial tree that contains n intervals
(thus n+1 levels) will have 2n nodes on the last level, and a total of 2n+1� 1 nodes. The
desire to use high values for n, which is necessary to increase precision, thus con�icts with
the resource-consumption limits imposed by the size of the tree.
From an algorithmic perspective, it is not strictly necessary to use a non-recombining

tree in order to maintain the price history of the underlying stock. In principle, it is
possible to design data structures that allow the user to maintain in each node a list of all
possible incoming paths, and compute and store separately all the relevant values that are
associated with those paths. Such solutions, while logically equivalent to a binomial tree,
are complex to implement and non-uniform. In the non-recombining tree each node can
be reached only through one path from the root, and only only one value (set of values)
characterizing that path must be accounted for. In our alternative solution, nodes far from
the root can be reached through many paths, which progressively complicates accounting
for the paths, and for the values associated with them. A more careful reasoning will
show that the overall complexity and resource requirements of such alternative methods
are not less than those of the corresponding simple non-recombining binomial tree. There
are no shortcuts if the entire price history must be accounted for.
From a programmer�s perspective, one big advantage of the binomial methods is that

the valuation of many di¤erent instruments can be implemented in a very uniformmanner.
It is possible to write very general valuation algorithms based on the binomial method
such that all the speci�c functionality is factored out into user-de�ned functions. You
have solved a problem of this �avor when you built a general valuation function on top
of a recombining binomial tree.
Of course, e¢ ciency matters, and one is thus motivated to look for more e¢ cient

6

alternatives.
Consider, for example, the case of Asian options with discrete price averaging. At

expiration, the only prices that matter are the values sampled at times ti, i = 1; n; prices
at intermediate times are not relevant. As long as we associate each node at expiration
with its own sequence of sampled prices, our binomial model will be useful for valuation.
Indeed, we can solve this problem in a manner analogous to the treatment of discrete
dividend payments, by "sprouting" a new independent subtree at each node that occurs
at any of the sampling times ti (and making sure that nodes from di¤erent subtrees never
recombine). In-between sampling times, as well as between time 0 and the �rst sampling
time, the subtrees will be recombining. Can you say why?
While the total number of nodes needed to implement this variation of the binomial

model will still be exponential in the number of sampling times, avoiding the doubling of
the number of nodes at each time step is can lead to a huge decrease in the number of
nodes needed if there are many more time intervals represented in the tree than sampling
times.

0.2.3 Numerical Solutions to Di¤erential Equations and Inequalities

The solution of many valuation problems can be stated in terms of the solution of a
problem involving (a system of) di¤erential equations and inequalities with suitable initial,
�nal, and boundary conditions. Some of these problems can be solved analytically, but
many can only be computed numerically. Many mathematical problems that arise in the
context of valuation have been studied extensively in other �elds, such as physics and
engineering. We do not expand on this topic further.

0.2.4 Monte Carlo Methods

There are no closed-form formulas for valuing discretely sampled Asian options. We will
now study these options to gain insights into a new valuation technique, the Monte-Carlo
method. As usual, we assume that the stock price follows a log-normal distribution. For
concreteness, we will focus on Asian calls. The treatment of Asian puts is analogous.
The time-t value of the option is, as usual, the discounted expect value of the pay-

o¤ at expiration, where the expectation is computed under the equivalent martingale
probabilities q:

V (t; T ;K) = e�r(T�t)Eq
�
max(�S �K; 0)

�
:

Let us assume for the moment that we have a general - but approximate - method of
numerically estimating expectations Eq [�].
One is often not interested only in determining the value of a particular instrument,

but also on simultaneously determining the sensitivity of the respective value to changes
in various underlying parameters. Knowing the value of an instrument is important for
trading and accounting purposes, knowing its sensitivities is important for hedging.
Assume that we can compute the approximate value of an Asian option, and that

the respective value is ~V (t; T ;K; p). Note that we have modi�ed the notation to make

7

explicit the dependence of the value on some underlying parameter p. We can estimate
the sensitivity of ~V to small changes in the parameter p by using any of the numerical
methods we have introduced for computing derivatives. Here is a method using symmetric
di¤erences:

@ ~V

@p
(t; T ;K; p) �

~V (t; T ;K; p+ �p)� ~V (t; T ;K; p)

�p
:

Such an approach might have the downside that the valuation method for the respec-
tive option must be used twice in order to compute the desired sensitivity. We point out,
however, that this is not necessarily the case, as some methods might generate values for
an entire range of parameters. Think, for example, of the valuation problem for European
or American options using �nite di¤erences, where we simultaneously compute the values
of the option for an many points between Smin and S. Depending on the step size of the
grid, one might be able to use these values to estimate the delta of the respective option.

0.2.5 Sensitivities of Asian Options as Expectations

Since we have an exact expression giving us the value of the Asian option as an expectation,
we can, in principle, compute the sensitivity with respect to in�nitesimal changes in the
value of parameter p:

@V

@p
=

@

@p

�
e�r(T�t)Eq

�
max(�S �K; 0)

��
=

@

@p

�
e�r(T�t)

�
Eq
�
max(�S �K; 0)

�
+ e�r(T�t)

@

@p
Eq
�
max(�S �K; 0)

�
:

We assumed that we have a method of computing numerical values for computing
expectations under q, but that does not imply that we know how to compute expressions
like @

@p
Eq [�]. Given our assumptions, it would be practical if we could interchange the

order of the di¤erential and expectation operator.

Do the Expectation and Di¤erential Operator Commute? Is this possible? If
yes, the following equality should hold in general, irrespective of the expression replaced
by �:

@

@p
Eq [�] = Eq

�
@

@p
�
�
:

To make things more speci�c, let us examine the validity of this purported equality
by using a digital "all-or-nothing" option. Let us consider one of the in�nitely many
possible paths that the stock price might follow between time 0 and the expiration time
T . At expiration, the payo¤ of the digital option is di¤erentiable for all underlying stock
prices, except at S(T) = K. It is easy to see that irrespective of the parameter p at
hand, we have that @Vdigital

@p
(T; T ;K) = 0 for all S 6= K, i.e. @Vdigital

@p
(T; T ;K) = 0 a.s.

("almost surely"). From this, we immediately conclude that Eq
h
@Vdigital
@p

(T; T ;K)
i
= 0. If

8

the di¤erential and expectation operator were commutable, the last relation would imply
that @

@p
Eq [Vdigital(T; T ;K)] = 0, which, in turn, means that

@Vdigital
@p

(t; T ;K) =
@

@p

�
e�r(T�t)

�
Eq [Vdigital(T; T ;K)] :

It is easy to see why this equality can not be true for all parameters p. The last relation
implies that the value of a digital option is not sensitive to changes in the volatility of the
underlying stock (�), or the stock price at time t. This can not be the case.
Thus, in general, the di¤erential and the expectation operator do not commute. With

this caveat, we note that it is possible for the two operators to commute, assuming that the
function represented by � above is uniformly integrable. In the following, we will commute
the di¤erential and expectation operator without proving the uniform integrability of the
functions at hand. The reader should feel assured, however, that the condition is satis�ed.

Modeling the Stock Price at Sampling Times The assumed log-normal distribu-
tion of the underlying stock prices implies that for any two moments of time ta < tb, the
following relation holds:

S(tb) = S(ta) exp

��
r � 1

2
�2
�
(tb � ta) + �Za;b

p
tb � ta

�
:

Note that Za;b is a value drawn from a standard normal distribution.
Consider now an Asian option with discrete price averaging, with n sampling times

such that at least two sampling times occur after time 0. Now take two successive sampling
times ti and ti+1, such that 0 = t0 < ti < ti+1. In simulating the price of the option at
time ti+1, we have the choice2 of producing a random price starting from time 0, or for
producing a random price starting from time ti, as illustrated in the two expressions
below:

S(ti+1) = S(0) exp

��
r � 1

2
�2
�
ti+1 + �Z0;i+1

p
tt+1

�
S(ti+1) = S(ti) exp

��
r � 1

2
�2
�
(ti+1 � ti) + �Zi;i+1

p
tt+1 � ti

�
:

Are these two formulations equivalent? If not, which version should we use for mod-
eling the evolution of the stock price? Both questions can be answered easily.
The two methods are not equivalent, in that they do not produce the same probability

distribution for the prices at time ti+1. A direct calculation will convince you of this.
Intuitively, it is clear that the equivalence can not hold. Assume, for example, that ti and

2We have other choices as well. For example, we could simulate the stock price at time ti+1 by starting
at time ti�1 and "skipping" over time ti. As the subsequent discussion makes it clear, these alternative
methods would not correct. As they do not provide any additional insights, we do not consider them
explicitly.

9

ti+1 are very close to each other, but far away from t0 = 0. Under these conditions, it
is highly likely that S(ti+1) will be close to the price at S(ti). This condition is satis�ed
when we simulate S(ti+1) starting from S(ti), but it will not necessarily hold when we
start the simulation at t0 = 0: The problem is that when we restart the simulation from
t0 = 0, we disregard the fact that the stock price has reached S(ti) and time ti, and that
this fact constrains the future evolution of the stock price (changes the distribution of
the future stock prices compared to the unconstrained distribution generated by starting
from t0).
As long as we make sure that the generates prices are not independent of each other,

we can still write the price for each intermediate sampling time ti, i = 1; n by using the
price of the underlying stock at time t0:

S(ti) = S(0) exp

"�
r � 1

2
�2
�
ti + �

i�1X
l=1

Zl;l+1
p
tl+1 � tl

#
:

Note that Zl;l+1 are independent standard normal random variables.

The Delta of An Asian Call Using the insights gained above, we get:

� =
@V

@S(0)

=
@

@S(0)

�
e�r(T�t)

�
| {z }

=0

Eq
�
max(�S �K; 0)

�
+ e�r(T�t)

@

@S(0)
Eq
�
max(�S �K; 0)

�

= :e�r(T�t)Eq
�

@

@S(t)

�
max(�S �K; 0)

��
:

Focusing on the di¤erential operator only, we can now write the following:

@

@S(0)

�
max(�S �K; 0)

�
=

@

@ �S

�
max(�S �K; 0)

� @ �S

@S(t)

=

(
@ �S
@S(t)

, if �S > K
0, if �S < K

= I �S>K
@ �S

@S(t)
a.s.

Note that max(�S �K; 0) is not di¤erentiable with respect to �S at the point �S = K.
This is not a problem, however, as the set of point of non-di¤erentiability is of 0-measure.
The notation I �S>K denotes the indicator function of the event �S > K. Computing the

10

value of @ �S
@S(t)

is straightforward:

@ �S

@S(0)
=

@

@S(0)

"
1

n

nX
i=1

S(ti)

#

=
1

n

nX
i=1

@S(ti)

@S(0)

=
1

n

nX
i=1

@

@S(0)
S(0) exp

"�
r � 1

2
�2
�
tt+1 + �

i�1X
l=1

Zl;l+1
p
tl+1 � tl

#

=
1

n

nX
i=1

exp

"�
r � 1

2
�2
�
tt+1 + �

i�1X
l=1

Zl;l+1
p
tl+1 � tl

#

=
1

n

nX
i=1

S(ti)

S(0)

=
�S

S(0)
:

Putting everything together, we get that

� =
@V

@S(0)
= e�r(T�t)

Eq
�
I �S>K �S

�
S(0)

:

Ignoring non-random factors, the delta of the Asian call has been written as an expec-
tation. By noting that a regular European call is just an Asian call with a single sampling
period at the expiration date, we can also write the formula for the delta of European
calls:

�EU =
@VEU
@S(0)

= e�r(T�t)
Eq
�
IS(T)>KS(T)

�
S(0)

:

This expression can easily be evaluated directly, through a computation similar in
�avor to that undertaken when we derived the Black-Scholes formulas.

The Vega of an Asian Call We proceed in a manner analogous to the previous
derivation:

� =
@V

@�

=
@

@�

�
e�r(T�t)

�
| {z }

=0

Eq
�
max(�S �K; 0)

�
+ e�r(T�t)

@

@�
Eq
�
max(�S �K; 0)

�
= e�r(T�t)Eq

�
@

@�

�
max(�S �K; 0)

��
:

11

Focusing on the di¤erential operator, we can write the following:

@

@�

�
max(�S �K; 0)

�
=

@

@ �S

�
max(�S �K; 0)

� @ �S
@�

= I �S>K
@ �S

@�
a.s.

The derivation of the @ �S
@�
term is also easy:

@ �S

@�
=

@

@�

"
1

n

nX
i=1

S(ti)

#

=
1

n

nX
i=1

@S(ti)

@�

=
1

n

nX
i=1

@

@�
S(0) exp

"�
r � 1

2
�2
�
ti + �

i�1X
l=1

Zl;l+1
p
tl+1 � tl

#

=
1

n

nX
i=1

��ti +

i�1X
l=1

Zl;l+1
p
tl+1 � tl

!
S(ti)

=
1

n

nX
i=1

�
��ti +

1

�

�
log

S(ti)

S(0)
�
�
r � 1

2
�2
�
ti

��
S(ti)

=
1

n�

nX
i=1

�
log

S(ti)

S(0)
�
�
r +

1

2
�2
�
ti

�
S(ti)

Putting everything together, we write the vega of the Asian call as an expectation:

� =
@V

@�
=
e�r(T�t)

n�
Eq

"
I �S>K

nX
i=1

�
log

S(ti)

S(0)
�
�
r +

1

2
�2
�
ti

�
S(ti)

#
:

Again, we can immediate derive the formula for a European call�s vega:

�EU =
@VEU
@�

=
e�r(T�t)

�
Eq
�
IS(T)>KS(T)

�
log

S(T)

S(0)
�
�
r +

1

2
�2
�
T

��
:

The formulas for an Asian call�s delta and vega do not appear particularly simple, nor
useful. Their advantages will be revealed as we examine Monte-Carlo methods below.

0.2.6 A Primer on Monte-Carlo Methods

Theorem 1 (The Weak Law of Large Numbers) If random variables X1, X2, X3, ... are
independent, E [Xi] = m, V ar [Xi] 6 K < 1, and Sn =

Pn
i=1Xi, then Sn

n
! m in L2

and probability.

12

This, and similar theorems, provide the theoretical basis for evaluating expectations
using Monte-Carlo methods. Consider the formulas we derived for Asian options:

V (t; T ;K) = e�r(T�t)Eq
�
max(�S �K; 0)

�
= e�r(T�t)Eq

�
I �S>K(�S �K)

�
@V

@S(0)
= e�r(T�t)

Eq
�
I �S>K �S

�
S(0)

@V

@�
=

e�r(T�t)

n�
Eq

"
I �S>K

nX
i=1

�
log

S(ti)

S(0)
�
�
r +

1

2
�2
�
ti

�
S(ti)

#

Any of the quantities under the expectation operator can be identi�ed with the random
variables Xi. All we have to do is to generate "many" sample values and average them to
get estimates of the respective random quantity�s expectation.
But how many sample values do we need to average? A measure of how far from

the true value our average is given by the standard deviation of Sn: �Sn =
p
V ar [Sn] =q

1
n2

Pn
i=1 V ar [Xi] 6

q
K
n
. By this estimate of the error, the convergence of Monte-Carlo

methods is O
�
n�

1
2

�
. As we know, this is not the whole story, as asymptotic compar-

isons between the performance of various methods might occasionally be misleading. Put
simply, the "big-O" notation hides constants, and these constants can surprise us. Still,
for simple problems, this rate of convergence is too slow compared to other methods.
The advantage of Monte-Carlo methods, however, is that their rate of convergence is not
sensitive to many problem parameters that degrade the performance of alternative meth-
ods. Hence, Monte-Carlo methods are preferred, or at least competitive, for solving many
complex problems. The valuation of Asian options is one of the simplest problems where
the advantages of these methods are borne out.
It is possible to increase the rate of convergence by generating sample values of that

are not entirely random. Such techniques, known as "pseudo Monte-Carlo" methods can
increase the rate of convergence to (almost) O(n�1). We do not discuss these methods
further.
Of course, in practice we will often not know the variance of the quantity that we are

trying to compute. We can get an unbiased estimate of the variance using the formula:

gV ar [Sn] = 1

n� 1

nX
i=1

�
Xi �

1

n
Sn

�2
:

These being said, let us return to the problem of the value, the delta, and the vega of
an Asian call. It is clear that one can generate random sample values for �S. Once values
for �S are available, it takes only a small - and constant, per path simulated - amount of
work to compute the value of expressions I �S>K(�S �K) and I �S>K �S, which appear under
the expectation operator in the formulas for the value and delta of the call. Assuming
that the cost of generating �S dominates the cost of these two simple expressions, it is
possible to compute both the value of the call and its delta will little additional overhead.

13

This is in contrast with the requirement of repeating the e¤ort of computing the option
value if we had used, say, a symmetric di¤erence method to compute delta.
Things get even better. There are no obvious simple ways to generate sample values

for �S without generating sample values for the stock price at all relevant times ti, i = 1; n.
If so, then all the elements for computing vega are generated whenever we compute either
the call value, or its delta (or both). Again, if the cost of generating the sample values
S(ti) dominates the cost of computing the value of the expressions under the expectation
operators, then we can compute vega with minimal overhead. To compute delta and vega
using �nite di¤erence approximations would require at least triple the e¤ort needed for
a simple valuation, while using the expectation form of delta and vega we can get away
with little more than the e¤ort needed for a simple valuation.

0.2.7 Generating Random Numbers

Given the distribution of a random variable, how do we sample it? In other words, how do
we generate random values drawn from a given distribution? The answer to this question
is surprisingly subtle and complex.
Let ' be the p.d.f., and � be the c.d.f. of a given distribution. From the de�nition of

�, we have that

�(z) = Prob(z
0 6 z) =

Z z

�1
'(z)dz:

Let u be a random variable drawn from a uniform distribution over the interval (0; 1),
i.e. u~U(0; 1).3 Let zu the value that satis�es the equality �(zu) = u; i.e. zu = ��1(u).
It is easy to prove that zu will have the same distribution as that speci�ed by ' and �.
So, if we can generate random values drawn from a uniform distribution on the interval

(0; 1), then we can generate variables with any distribution. But how to generate such
uniformly distributed values?
The problem of generating uniformly distributed random variables is complicated by

the limits of computer hardware. Let us assume for a moment that we have an algorithm
that draws samples from a (mathematically) uniform random distribution, and maps them
to the �oating-point number in the interval (0; 1) closest to the generated number.4 Let
F(0;1) be the set of all �oating point numbers that can be represented in the interval (0; 1).
When lined up on the real axis, these values are not equidistant; speci�cally, values closer
to the left end of the interval (0) will be closer to their neighbors, than values closer to the
right end of the interval (1). This means that the size of the interval within which a point is
closer to a given value f from F(0;1) than any other value in F(0;1) depends on the magnitude
of f . Hence, certain values from F(0;1) will be chosen more frequently than others. So the
fact that we can not represent the entire continuum of values in (0; 1) impacts the uniform

3Note that we did not include the ends of the interval, i.e. values 0 and 1. Can you see why?
4Of course, if such an algorithm existed, it could not work this way. This is because the algorithm

would have to use the very same �oating point representation whose limits we are now discussing. The
algorithm could generate its values, however, as if this mapping would truly occur after a corresponding
value has been drawn from the underlying truly uniform distribution.

14

distribution in a subtle way. The inherent discretization introduced by the �oating point
representation could negatively in�uence the quality of the distributions produced using
��1(u). Could it be that the non-uniform random distributions that we generate are in
some sense worse if we start from our "uniform" distribution that if we had generated
them directly using some alternate method? These are important questions, but we do
not elaborate on them.
We can, in principle, generate random values in (0; 1) that are uniform in the sense

that all values that can be produced are equally likely to be chosen. This can be done,
for example, by dividing the interval (0; 1) into a number of equal-length subintervals,
and choosing the midpoint of each such interval as the representative for the interval. In
the case of the �oating point representation with a mantissa of N bits, for example, we
can set the exponent to 0, and then create an algorithm that generates all possible bit
con�gurations for the mantissa.5

Except for scaling by 2N , the problem of generating the uniform distribution is reduced
to selecting any random integer in the range 1 to 2N � 1 with equal probability. Many
random number generators use similar ideas.
We have reduced the problem of generating a uniform random distribution on (0; 1) to

the problem of generating integers in a given range. The latter problem has been studied
extensively.
Since our computers are deterministic, true randomness is hard to come by. Assume

that we have a source that produces one random bit b at a time, such that Prob(b =
1) =Prob(b = 0) = 0:5. By generating a sequence of N such random bits, we can
generate all numbers in the range from 1 to 2N � 1 (but we have to throw away the
con�gurations for 0).
So how do we generate a truly random bit b with the property that Prob(b = 0) = 0:5?

It turns out that we can reduce this problem to the problem of generating a random bit b
with the property that Prob(b) = p, where p is �xed, but unknown. Indeed, assume that
we generate two biased random bits b1, and b2. As long as b1 = b2, we keep generating
a new pair of bits. If b1 6= b2, then we set b to the value of b1. Show that this method
generates an unbiased bit from a biased bit!
Generating a truly random - but perhaps biased - bit is still not feasible in a de-

terministic computer. This feat is typically achieved using special hardware. Hardware
that produces random bits by sampling the electronic noise produced by special-purpose
circuit elements is commercially available, but often expensive.
It turns out that for many applications true randomness is neither needed, nor par-

ticularly useful. Indeed, it is often su¢ cient to generate pseudo-random sequences of
integers. Such sequences are otherwise perfectly deterministic, but they appear as if they
were random in that they pass statistical tests that a truly random sequence would be
expected to pass. Pseudo-random sequences are often "seeded" with values, which - while

5Floating point representations normalize the mantissa, so that the �rst digit in base 2 or 16 is non-
zero. Normalization might force us to use a non-zero exponent for some values that we generate, but this
is a detail that we can easily account for.

15

deterministic themselves - are not easily predictable or reproducible (unless the user reuses
such a value directly). Good seeds are provided by the total time, measured in milisec-
onds or microseconds, elapsed from a reference date, by the time of continuous computer
uptime, or by the number of microprocessor instructions executed since the last reboot.
Saved seeds allow for the repetition of the entire pseudo-random sequence. This is a great
advantage when testing and debugging programs, for example.
As the brief discussion above shows, generating random or pseudo-random number

sequences is not trivial. Without expanding further, we conclude by paraphrasing two
pieces of advice from Donald Knuth�s "Art of Computer Programming:"

a) Do not trust your random number generator; test it. Indeed, it is not uncommon
for random number generators, especially for those in general-purpose packages, to be
�awed. This problem has been mitigated by the development of high-quality mathe-
matical software in the past few years, but "surprises" in this area are still likely to be
abundant.

b) Do not choose your random number generator randomly!

16

